Exam Statistics Formula Sheet, Excel

Mean =AVERAGE()
Weighted Mean =SUMPRODUCT(weights, values) / n
Where n = SUM(weights)
Median =MEDIAN()
Mode =MODE.SNGL()  or  =MODE.MULT()
Range =MAX()-MIN()
Class Width =range / number of classes
Variance Sample: =VAR.S()
Population:  =VAR.P()
Standard Deviation (SD)
Sample: =STDEV.S()
Population: =STDEV.P()
Or,=SQRT(variance)
Skewness =3*(mean - median) / SD
Coefficient of Variation
=SD / mean * 100
Empirical Rule 0.68, 0.95, 0.997
Chebyshev = 1 - 1 / SD^2
Percentile i = percentile/100 * n
Round up if decimal; average if whole.
IQR, Outliers = Q3 - Q1
Upper Outlier =Q3 + 1.5 * IQR
Lower Outlier =Q1 − 1.5 * IQR
Probability P(A)
P(A or B)
= A / Total
= P(A) + P(B) - P(Both)
P(A and B)
P(A and B)
P(A | B)
P(A | B)
= P(A) * P(B)
= P(A) * P(B|A)
= P(A and B) / P(B)
=      P(A|B)*P(B)    
P(A|B)P(B)+P(A|Bc)P(Bc)
= P(B|A)*P(A) / P(B)
Independent
Dependent
Conditional
Bayes' Rule
Permutation =PERMUT(n,r)
Combination =COMBIN(n,r)
Discrete Distributions
Expected Value: =SUMPRODUCT(x,P(x))
Variance: =SUM(x^2 * p) - (expected value^2)
SD:  =SQRT(discrete variance)
Binomial Discrete Distributions



Mean or Expected Value:  =n*p
Variance:  =n*p*(1 - p)
SD=SQRT(variance)
Probability: 
=BINOM.DIST(successes,trials,probability,cum)
Z Score =STANDARDIZE(x,mean,SD)
=(x - mean) / SD
Normal Distributions
  Probability: 
  =NORM.DIST(x,mean,SD,TRUE)
  Where TRUE means cumulative

  Z to Probability:
  =NORM.S.DIST(z score,1)


  Probability to Z:
  =NORM.S.INV(probability)
  Probability to X:
  =NORM.INV(probability,mean,SD)



Sampling from Normal Distribution, Mean (Central Limit Theorem)
  Standard Error: =SD / SQRT(n)  
  Probability:
  =NORM.DIST(x,mean,SD/SQRT(n),1)
=NORM.DIST()  
  Where 1 means cumulative
Sampling from Normal Distribution, Proportion
  Validation: n*p ≥ 5 and n*(1-p) ≥ 5
  z = (pS - p) / SQRT(p*(1 - p) / n)
  Probability: =NORM.S.DIST(z,1)
Confidence Intervals, Mean
Alpha = 1 - Confidence Level
  Margin of Error (E):
  E =CONFIDENCE.NORM(alpha,SD,n)


  E =CONFIDENCE.T(alpha,SD,n) (small sample)
  Confidence Interval: = (mean - E) to (mean + E)
Confidence Intervals, Proportion
  z =NORM.S.INV(confidence level + alpha/2)
  E =z * SQRT(p * (1-p)/n)
  Confidence Interval: =(proportion - E)  to  =(prop + E)
Sample Size, Mean
  z = NORM.S.INV(confidence+alpha/2)
  n = (z * SD / E)^2
Sample Size, Proportion
  n = p*(1 − p) * (z / E)^2
Hypothesis Testing Mean
  Decision Rule (D.R.):
    1-tail: z =NORM.S.INV(confidence level)
    2-tail: z =NORM.S.INV(confidence level + alpha/2)
  Test Statistic:  z = (sample mean - mean) / (SD/SQRT(n))
Hypothesis Testing Proportion
  Test Statistic:  z = (ps - p) / SQRT(p*(1 - p) / n)
Hypothesis Testing Small Sample
  D.R.: 1 tail:  t =T.INV(alpha,df)
  D.R.: 2 tail:  t =T.INV.2T(alpha,df)
  Where df = degrees of freedom = n - 1


Hypothesis Testing P-Value
  1-tail:  z =NORM.DIST(sample mean,
  population mean, SD / SQRT(n),1)
  2-tail:  z = NORM.DIST(sample mean,
  population mean, SD / SQRT(n),1)*2
Regression Analysis
  y = m*x + b (but in statistics it's written y = a + bx)
  In Excel, "Multiple R" = coefficient of correlation